A simple expected running time analysis for randomized "divide and conquer" algorithms

نویسنده

  • Brian C. Dean
چکیده

There are many randomized “divide and conquer” algorithms, such as randomized Quicksort, whose operation involves partitioning a problem of size n uniformly at random into two subproblems of size k and n − k that are solved recursively. We present a simple combinatorial method for analyzing the expected running time of such algorithms, and prove that under very weak assumptions this expected running time will be asymptotically equivalent to the running time obtained when problems are always split evenly into two subproblems of size n/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solution of Linear Probabilistic Recurrence Relations 1

Linear probabilistic divide-and-conquer recurrence relations arise when analyzing the running time of divide-and-conquer randomized algorithms. We consider first the problem of finding the expected value of the random process T (x), described as the output of a randomized recursive algorithm T . On input x , T generates a sample (h1, . . . , hk) from a given probability distribution on [0, 1]k ...

متن کامل

QUICKSELECT Revisited

We give an overview of the running time analysis of the random divide-and-conquer algorithm FIND or QUICKSELECT. The results concern moments, distribution of FIND’s running time, the limiting distribution, a stochastic bound and the key: a stochastic fixed point equation.

متن کامل

Space-efficient geometric divide-and-conquer algorithms

We develop a number of space-efficient tools including an approach to simulate divide-and-conquer space-efficiently, stably selecting and unselecting a subset from a sorted set, and computing the kth smallest element in one dimension from a multi-dimensional set that is sorted in another dimension. We then apply these tools to solve several geometric problems that have solutions using some form...

متن کامل

Efficient cache oblivious algorithms for randomized divide-and-conquer on the multicore model

In this paper we present randomized algorithms for sorting and convex hull that achieves optimal performance (for speed-up and cache misses) on the multicore model with private cache model. Our algorithms are cache oblivious and generalize the randomized divide and conquer strategy given by Reischuk [14] and Reif and Sen [17]. Although the approach yielded optimal speed-up in the PRAM model, we...

متن کامل

Free Vibration Analysis of Repetitive Structures using Decomposition, and Divide-Conquer Methods

This paper consists of three sections. In the first section an efficient method is used for decomposition of the canonical matrices associated with repetitive structures. to this end, cylindrical coordinate system, as well as a special numbering scheme were employed. In the second section, divide and conquer method have been used for eigensolution of these structures, where the matrices are in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2006